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Squeezing by tuning the oscillator frequency 
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Received 14 March 1989, in final form 16 May 1989 

Abstract. In this paper we examine the possibility of generating squeezed states out of 
coherent states by external changes ofthe oscillator frequency. Using the evolution operator 
method developed by Cheng and Fung, we investigate the evolution of a coherent state of 
a time-dependent harmonic oscillator as well as its squeezing and coherence property. 
Two specific models of frequency variation are explored; namely, one whose frequency is 
exponentially decreasing in time and the other with a periodic frequency. Our analyses 
indicate that the wavefunction of the time-dependent oscillator starts as a coherent state 
at r = O  and evolves as a squeezed state at a later time. It is also shown that squeezing 
cannot be generated by an adiabatic change of the oscillator frequency because the variances 
of 4 and p  ̂ turn out to be adiabatic invariants, whereas a sudden change can produce 
squeezing. 

1. Introduction 

In the past few years squeezed states of the electromagnetic field have been widely 
studied, both theoretically and experimentally [ 1,2]. These are states which have 
reduced fluctuations in one field quadrature, when compared with coherent states. 
Squeezed states of light were first studied by theorists interested in their properties as 
generalised minimum-uncertainty states [3- 111. These properties were discovered 
independently by several workers using different terminologies and have been described 
variously as ‘pulsating wavepackets’ [3], ‘new coherent states’ [7,8], ‘two-photon 
coherent states’ [9] and ‘ideal squeezed states’ [ 113. The first experimental realisation 
of squeezed light was reported by Slusher and co-workers [ 121 using four-wave mixing 
in sodium atoms. They were able to reduce the optical noise below the vacuum 
fluctuation level by 7- 10% using a combination of phase-stable laser excitation and 
cavity field enhancement. Since then a tremendous amount of effort has been spent 
on devising feasible experimentally realisable schemes to generate squeezed states. 
Recently several laboratories have obtained improved experimental evidence of 
squeezed states produced by various nonlinear processes [ 13- 151. 

A number of possible exciting applications of squeezed states have been suggested. 
One application proposes using squeezed states of light in optical communication 
systems to give a signal-to-noise ratio better than the quantum limit of coherent light 
[ 16,171. Another suggested application is in the laser interferometric detection of 
gravitational radiation [ 111. The application of squeezed light will also allow us to 
modify fundamental vacuum field effects such as spontaneous emission and the Lamb 
shift. 
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It has been shown [ 181 that a single cavity mode of the electromagnetic field behaves 
like a simple harmonic oscillator of unit mass and is described by the ‘position’ and 
‘momentum*’ opera*ors and p* related to the conjugate electric and magnetic field 
operators E and H. Thus, the discussion of production and detection of squeezed 
states of the oscillator has immediate relevance in the generation and detection of 
squeezed light. It is the purpose of this paper to examine the possibility of generating 
squeezed states out of coherent states by external changes of the oscillator frequency. 
Using the evolution operator method developed by Cheng and Fung [ 191, we investigate 
the evolution of a coherent state of a time-dependent harmonic oscillator and discuss 
its squeezing and coherence property. Two specific models of frequency variation for 
the oscillator are examined: one whose frequency is exponentially decreasing in time, 
and the other with a periodic frequency. Implications of the results are discussed as well. 

2. Evolution operator method 

Consider a particular time-dependent Hamiltonian which comprises SU( 1 , l )  group 
generators 

where j + ,  j o  and j -  form the SU(1 , l )  Lie algebra: 
A(t)  = u l ( t ) ~ + + a 2 ( t ) ~ o + u 3 ( t ) ~ _  (1) 

* A  A 

[.I+, 5-3 = -25, 
[ jo,  j*] = d* 

and ai( t )  are arbitrary functions of time. The corresponding Schrodinger equation is 

As usual, we will define the evolution operator c(t, 0) such that 
f i ( t ) l @ ( t ) )  = ihal@(r))/at. (3) 

I@(?) )=  fro, O)l@(O)) (4) 
where i@(O)) is the wavefunction at time t = 0. Inserting (4) into (3) yields the evolution 
equation 

Since .fo, j +  and j -  form a closed Lie algebra SU(1, l ) ,  the evolution operator can be 
expressed in the following form: 

(6) i r ~ t ,  0) = exp(c,(r)j+) exp(c2(t)jo) exp(c2(t)j-) 
where c i ( t )  are to be determined. Then by direct differentation with respect to time, 
we obtain 

air(? ,  o ) / a t  = [(C, - c , i 2 +  c: exp(-c2)i3)j+ 

(7)  
Substituting (11, (6), and (7)  into (51, and comparing the two sides, we obtain three 
ordinary differential equations: 

+ ( t2 - 2 c ,  exp( - c 2 )  i3 ) j0  + exp( - C J  ~ ~ j - 1  r j (  t, 0 ) .  

i h ( ~ , - c , ~ , + c ~ e x p ( - c , ) ~ , )  = U ,  

i h ( C2 - 2c ,  exp( - c2) 6,) = u2 

i h  exp( -c2)C3 = u3 
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which can be rewritten as 

c1 = a ;  + a;c,  + a;c: 

c2 = a; + 2a;c, 

C3 = al, exp( c 2 )  

with the initial conditions 

C,(O) = C,(O) = C3(O) = 0. (12) 

ai = a,/ih. (13) 

The a; are given by 

Equation (9),  which is just the Ricatti equation, is the key equation we have to solve 
first. Once it is solved, the other two equations can be solved readily to give 

c2 = [ ' du ( a ;  + 2a l,cl ) 
J O  

c j  = Jo' dual, exp(c2). 

3. Time-dependent harmonic oscillator 

The general expression for the Hamiltonian of a time-dependent harmonic oscillator 
of unit mass is 

where o( t )  is the oscillator frequency and is time dependent. To tackle this quantum 
problem, we first rewrite the Hamiltonian in the following form: 

(16) A ( t = U 1 ( t ) j+ + U>( t ) j n  + (13 ( t 13- 
where 

and 

a,( t )  = hw( t ) 2 / i  

a,( t )  = 0 (18) 
a,( t )  = h/i. 

Then we can represent the evolution operator for the above Hamiltonian as follows: 

r i ( t ,  0 )  =exp(cl(t).?+) exp(c2(t)jo) exp(c,(t)j-) (19) 
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with c,( t )  given by 

in which f( t )  satisfies the following differential equation: 

f( t )  + W (  t )2 f (  t )  = 0. 

I W O ) )  = la) 

;la) = ala) 

Suppose we start with a coherent state at t = 0: 

that is 

with 

~ wo$+ip* 
a =  

(2hwo)1’2 

wg = U (  t = 0). 

The wavefunction at any later time will be represented by 

I W r ) )  = O(t ,  0)la). 

a = O( t ,  O)&O+( t ,  0) 

Now we can define a new operator a as 

(24) 

(25) 

and it is easy to see that the wavefunction i @ ( t ) )  is a coherent state with respect to 
this new operator 

dlQ(t)) = aia( t ) ) .  (26) 

!sing (19) and (231, it can be shown that the operator 2 is related to the new operator 
A by a Bogoliubov transformation 

(27) a = 7,; - 77*;+ 

with 

I r l 1 l 2 - 1 7 7 2 I 2 =  1 (28) 
where q,and 772 are given by 

) 
) 

ic, 
2 Wn 

ic, 
2 WO 

exp(-c2/2) (1 -c,c3+exp(c2)---iiwoc, 

exp(-c2/2) ( 1+c,c3-exp(c2)+--iiwoc, . 

771 = 

772 = 
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These results imply that the wavefunction I@( t ) )  is a squeezed state. So the wavefunc- 
tion starts as a coherent state at t = 0 and evolves as a squeezed state at a later time. 
To see its squeezing property explicitly, we will compute the variances of $ and 6. 
Using the evolution operator in (19), it can be shown that the expectation values of 
these operators with respect to the wavefunction IO( t ) )  is given by 

1,: 

($) = (E) Re[exp( -c2/2)( 1 - iwoc3)a*] 

(9) = -(2 hwo)’’ ’ ~ m [  exp( -c,/2)( -c1 c3 + exp(c,) - ic,/ w o ) a  *I. 
The corresponding fluctuations in $ and p* will then be 

Immediately we see that 

So we obtain squeezing in the fluctuation of one operator at the expense of an increase 
in the fluctuation of the other operator. Thus a squeezing property of IO( t ) )  is apparent 
here. 

Let us now look at  the two limiting cases of an  adiabatic change and a sudden 
change of the oscillator frequency. 

3.1. A n  adiabatic change of frequency 

In the adiabatic limit of frequency change, we may approximate the desired solution 
of (21) by 

f ( t ) -  c cos(w( t ) t )  (33)  

where C is an  arbitrary constant. The corresponding c , ( t )  are 

c , ( t ) =  - w ( t )  t an(w( t ) t )  

c 2 ( t )  = -2 log)cos(w(t)t)]  
(34) 

- 1  

Then it is easy to see that, in the lowest approximation, A q  and Ap at time t are given 
by 

This implies that the variances of 4 and p* are adiabatic invariants. Thus, squeezing 
cannot be generated by adiabatic changes in the oscillator frequency. 
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3.2. A sudden change of frequency 

Suppose that w ( t )  has a sudden jump at time t o ,  namely, @(Os ts to)  = w -  and 
w (  t > to)  =,w+. Then, according to the sudden approximation [20], the evolution 
operator U (  to’, t i )  = 1; this implies that c , (  to’) = c,(  t i ) .  Without loss of generality, we 
will take to = (27 r /w- )  for simplicity. Consequently, it is not difficult to show that, for 
o s  t s t o ,  

c l ( t )  = -w -  tan(w-t)  

c z ( t )  = - 2  loglcos(w-t)l 

-1 
c3( t )  =: tan(w-t)  

w 

and for I >  t o ,  

c l ( t ) = - w +  t an (w+( t - to ) )  

c2( t )  = -2  log~cos(w+( t - to))l  

-1 
c 3 ( t )  =-;tan(w+(t-t,)). 

w 

Hence, A q  and A p  at time f are given by 

A q ( 0 S  t 6 t o )  = ( w ’ / w - ) ” ’ A q (  t > t o )  = (h/2w-)”’  

A p ( 0 s  i s  t o ) = ( w - / w + ) ” 2 A p ( t >  t o ) = ( h w - / 2 ) ’ / 2 .  
(37) 

Clearly, squeezing will occur in either A 4  or A p  as a result of a sudden change of 
oscillator frequency. 

4. Model Hamiltonian 

In this section two specific models of frequency variation for the time-dependent 
oscillator will be considered. 

4.1. Exponentially decreasing frequency (U(?) = exp(-sf/2), 0 < E  << 1) 

With this model frequency, (21) becomes 

jl.( t ) + exp( - et  )f( t ) = 0. 

Introducing the variable 

2 
s( t )  = - exp( - - ~ t / 2 )  

& 

we can reduce (38) to a zeroth-order Bessel differential equation 

d2f 1 df 
ds2 s ds  
-+--+f=O 

whose general solution is, of course, given by 

f(s) = k , Jo ( s )+kzYo(s )  

(38) 

(39) 
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for some arbitrary constants k ,  and k 2 .  Here, J o ( s )  and Yo(s)  are the zeroth-order 
Bessel functions of the first and second kind, respectively. Thus c i (  t )  can be expressed 
as 

E S  klJl (s )+  k2Y,(s )  
2 k,Jo(s) + k2 Y,,(s) 

c , ( r ) = -  

kiJo(s)+k2Yn(s) 
In order to satisfy the initial condition c,(O) = 0, we must require 

With the large argument asymptotic expansion of the Bessel functions, it can be shown 
that 

B = tan (3 - :) 
and 

In the small-t limit, namely, s ( t )  >> 1, the c i ( t )  are given by 

c,(t)--tan(t)  exp(-et/2) 

c2( t )  = 2 log/sec( t ) l  - $ E t  

c 3 ( t )  = -tan(t) exp(-at/2). 
(45) 

Then, in the lowest approximation, we obtain 

Ap = U (  t ) A q .  (46) 
This result is, of course, exactly what we expect from an adiabatic change of oscillator 
frequency. In the large-t limit, i.e. s ( t ) < <  1, the c , ( t )  are given by 

With the above results, we can obtain A q  and Ap as follows: 

It is apparent that strong squeezing occurs in the fluctuation of p* in the large-t limit. 
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All in all, the above analyses explicitly illustrate that, in the small-f limit, when 
the adiabatic approximation is valid, there is no squeezing; whereas in the large-t limit, 
when the process is no longer adiabatic, squeezing is generated. 

4.2. Periodic frequency ( ~ ( t )  =[@ - 2 y  C O S ( ~ E ~ ) ] ” ~ ,  0<2y</3, E >  0) 

Introducing this model frequency into (21) produces 

f( t )  + [ p  - 2  y COS(2Et)l f (  t )  = 0. 

~ ‘ ~ / ~ T ~ + [ A - ~ Q c o s ( ~ T ) ]  f = O  (50) 

(49) 

Equation (49) can be rewritten in the canonical form of the Mathieu equation: 

where 

Suppose we assume that A is the characteristic number for the second-order cosine-type 
Mathieu function of the first kind ce2( T, Q ) .  Then the general solution of (50) is given 
by 

f(7)=k3ce2(T9 Q ) + k 4 f e 2 ( ~ ,  Q )  ( 5 2 )  

for some arbitrary constants k3 and k,.  Here, fe2(T, Q )  is the second-order Mathieu 
function of the second kind conjugate to ce2(r, Q ) .  In  order to satisfy the initial 
condition c , ( O )  = 0, we must require k, = 0. Thus ci(  t )  can be expressed as 

Now, using the above results, we can write A q  and A p  as follows: 

where 
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For Q S  1, it can be shown that 

where s e 2 ( T ,  Q )  is the second-order sine-type Mathieu function of the first kind. This 
implies that f(7) can be approximated by 

Accordingly, for Q i 1, A q  and A p  are given in closed-form by 

In figures 1 and 2 ,  we plot the time variation of the fluctuations of A q  and Ap, 
respectively. It should be noted that, since both ce2( 7, Q )  and se2( 7, Q )  are periodic 
functions of T with period T, A q  and A p  are also periodic in T with the same period. 
These diagrams clearly show that there is squeezing in the fluctuation of $, together 
with an increase in the fluctuation of 8. Furthermore, we can easily see that here the 
squeezing in A q  persists at all times, and that the degree of squeezing can be changed 
by varying the parameter 0. 

In summary, the above analyses of the two specific models illustrate explicitly that 
the time-dependent oscillator starts as a coherent state at t = 0 and evolves as a squeezed 
state at a later time, as well as that an adiabatic change of the oscillator frequency 
cannot generate squeezing because the variances of $ and 8 are adiabatic invariants. 

0 1 2 
T (rad1 

Figure 1. Time variation of the variance in q, Aq. 
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Figure 2. Time variation of the variance in p ,  A p  

5. Conclusion 

We have investigated the evolution of a coherent state of a time-dependent harmonic 
oscillator as well as its squeezing and coherence property using the evolution operator 
method developed by Cheng and Fung. Two specific models of frequency variation 
were explored; namely, one whose frequency is exponentially decreasing in time and 
the other with a periodic frequency. Our analyses indicate that the wavefunction of 
the time-dependent oscillator starts as a coherent state at t = 0 and evolves as a squeezed 
state at a later time. We also observed that squeezing cannot be generated by an 
adiabatic change of the oscillator frequency because the variances of 4 and p  ̂ turn out 
to be adiabatic invariants, whereas a sudden change can produce squeezing. Hence, 
it can be concluded that squeezed states can be generated out of coherent states by 
external changes of the oscillator frequency. 

Note  added. Squeezing due to changes in the oscillator frequency has been discussed in the literature. It 
was shown by Janszky and Yushin [21] that a sudden frequency jump leads to squeezing. Also, the possibility 
of generating squeezing by continuous change of oscillator frequency has been considered recently by Ma 
and Rhodes [22]. I should like to thank the referees for bringing these references to my attention. 
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